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1 Introduction

SMS4 is a Chinese block cipher, mandated for use in Wireless LAN WAPI (Wired Au-
thentication and Privacy Infrastructure) [18]. The encryption algorithm written in Chinese
was released by the Chinese Government in January 2006 and its English translation was
released in 2008 [5].

Once the specification of SMS4 was known in public, several cryptanalysis on SMS4 have
been presented in the cryptographic community. An integral attack on 13-round version was
first presented in [13] and an algebraic cryptanalysis was presented in [11]. An impossible
differential cryptanalysis on 16-round version was performed in [14] and the results were
further improved in [17]. Rectangle attacks were applied to 14-round version in [14, 17], 16-
round version in [20] and 18-round version in [12]. A boomerang attack on 18-round version
was presented in [12]. Differential cryptanalysis was applied to 21-round version in [20] and
on 22-round version in [12, 21]. A linear cryptanalysis on 22-round version was presented in
[7, 12]. Among these cryptanalyses, the best known attack is the differential attack on the
22-round version of SMS4 which requires 2117 data complexity and 2112.3 time complexity
[21].

The linear attack against the 23-round version of SMS4 was also discussed in [7], motivated
by the fact that the strongest linear approximation is not single but multiple. However, the
result of the discussion was negative and the possibility of the attack was left for future
research. Our paper is the response to this open question. We apply the multidimensional
linear attack method [9] to SMS4 and show that the 23-round version of SMS4 (out of 32
rounds) can be attacked with less complexity than key exhaustive search.

Multidimensional linear attack [8, 9] is an extension of Matui’s linear attack [15], in which
maximum 2m linear approximations can be used for the attack by considering only m-
dimensional linear approximations. In this attack, the probability distribution of multidi-
mensional linear approximations is exploited to distinguish the correct key from the wrong
keys. The multidimensional linear attack was applied to the block cipher PRESENT [1] up
to 26 rounds in [2]. Later in [10], Hermelin and Nyberg proposed an improved algorithm
(which is called the convolution method) which can reduce the time complexity significantly
by applying Fast Walsh-Hadamard Transform algorithm [19].
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In this paper, we apply the up-to-date multidimensional linear attack framework to SMS4.
Our attack requires 2126.7 of the data complexity, 2127 23-round encryptions and 2120.7

memory complexity. Our attack algorithm also demonstrates that the convolution method
[10] is highly useful for reducing the time complexity of the attack.

This paper is organized as follows. In Section 2, the algorithm of SMS4 is briefly described
and the previous linear attacks are discussed. In Section 3, the multidimensional linear
attack methods are presented and an improved technique for reducing the time complexity
is presented. In Section 4, the multidimensional linear attack using Algorithm 2 against
23-round version of SMS4 is presented. Section 5 concludes this paper. We also tested the
suitability of our attack model for SMS4. In the Appendix we present results from simulations
of a multidimensional attack over 8 rounds of the SMS4 cipher.

2 Preliminaries

2.1 Brief Description of SMS4

SMS4 is a generalized Feistel block cipher using a 128-bit key. The encryption algorithm
is composed of 32 rounds, each of which takes four 32-bit input words, modifies one of the
input words and produces four 32-bit output words including three input words unchanged.
Let the 128-bit input block denote the four 32-bit elements (X0, X1, X2, X3) and RKi ∈ F

32
2

denote the (i+ 1)-th round key where 0 ≤ i ≤ 31. The (i+ 1)-th round function of SMS4 is
defined as

Xi+4 = Xi ⊕ F (Xi+1, Xi+2, Xi+3, RKi) = Xi ⊕ L(τ(Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕RKi)) (1)

which is illustrated in Figure 1.
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Fig. 1. The i-th round function of SMS4

Both τ and L are described as follows. Let S denote the 8 × 8 S-box of SMS4. For A =
(a0, a1, a2, a3) ∈ (F8

2)
4, the non-linear transformation τ is defined as

τ(A) = S(a0)||S(a1)||S(a2)||S(a3)

where || stands for the concatenation. The linear transformation L is defined as

L(X) = X ⊕ (X ≪ 2)⊕ (X ≪ 10)⊕ (X ≪ 18)⊕ (X ≪ 24)
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where X ≪ n denotes the left-rotated X by n-bit.

Let (P0, P1, P2, P3) ∈ (F32
2 )4 and (C0, C1, C2, C3) ∈ (F32

2 )4 be the 128-bit plaintext and
ciphertext, respectively. Then, the SMS4 algorithm is described as follows:

1. Set (X0, X1, X2, X3)← (P0, P1, P2, P3);
2. For i = 0, 1, . . . , 31, do the following

Xi+4 ← Xi ⊕ F (Xi+1, Xi+2, Xi+3, RKi)
3. Set (C0, C1, C2, C3)← (X35, X34, X33, X32).

Similarly to AES S-box, the S-box of SMS4 is built by the combination of an inverse function
and a linear transformation [6]. The encryption and decryption algorithms are identical
except that the round keys for decryption are used in the reverse order of the encryption
[5]. We omit the key scheduling algorithm here since it is not directly related to our attack.
For complete description of SMS4, we refer to the paper [5].

2.2 Previous Linear Cryptanalysis

In this section, we briefly describe the linear cryptanalysis on the 22 rounds version of SMS4
presented in [7]. Let n be a non-negative integer. Given two vectors a = (an−1, . . . , a0) and
b = (bn−1, . . . , b0), the a · b denotes the standard inner product a · b = an−1bn−1⊕ · · ·⊕ a0b0.
Let us consider a function f : {0, 1}n → {0, 1}n. Given a linear input mask a and an output
mask b, the correlation of an approximation a · x = b · f(x) is measured as follows.

ρ(a, b) = 2−n(#(a · x⊕ b · f(x) = 0)−#(a · x⊕ b · f(x) = 1))

where x ∈ GF (2n).

Let γ ∈ F
32
2 be a linear mask. Equation (1) is linearly approximated by applying γ as both

input and output mask as follows:

γ ·Xi+4 = γ · (Xi ⊕Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕RKi) (2)

and the correlation of (2) is denoted as ρ(γ, γ).

For the next round, we get a similar approximation

γ ·Xi+5 = γ · (Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕Xi+4 ⊕RKi+1). (3)

If (2) and (3) are linearly added, the following approximation is obtained over two rounds:

γ · (Xi ⊕Xi+5) = γ · (RKi+1 ⊕RKi) (4)

with the correlation of ρ2(γ, γ). Note that Approximation (4) is actually built over 5 rounds
due to the Feistel structure.

Now, let’s consider the 22-round version of SMS4. If we apply Approximation (4) to the
fourth and fifth round, then we get

γ ·X3 ⊕ γ ·X8 = γ · (RK3 ⊕RK4). (5)

By iterating (5) three times in a serial way and combining them, the following linear ap-
proximation is established:

γ ·X3 ⊕ γ ·X18 = γ · (RK3 ⊕RK4 ⊕RK8 ⊕RK9 ⊕RK13 ⊕RK14). (6)
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with the correlation of ρ6(γ, γ). Since X3 is the last input word of the first round and X18 is
the first output word of the 18-th round, Approximation (6) represents an 18-round linear
approximation of SMS4.

In [7], the linear approximations of the single round function were exhaustively searched.
In result, 24 linear approximations holding with the highest correlations of 2−9.19 were
identified. Hence, the strongest 18-round linear approximation with a form of (6) has the
correlation of 2−9.19×6 = 2−55.14. The values of linear masks of the 24 linear approximations
are listed in Table 1. In this table, L2 denotes a transpose function of L. If a is the output
mask from L, then the mapping L2 is defined to satisfy the following equation: a · L(x) =
L2(a) · x for x ∈ GF (232).

Using 18-round linear approximation (6) which starts from round 3 and ends at the round
20, one can recover 24 bits from both RK1 and RK20 and 32 bits from both RK0 and
RK21 by Matsui’s algorithm 2 [15]. In [7], the complexity of the linear attack against the 22-
round version of SMS4 was estimated with around 2118 data complexity and 2117 22-round
encryptions.

Discussion Let a be a 32-bit linear mask. Let A0 be a set of linear masks which is defined
as

A0 = {a|0 ≤ a < 224, 0 ≤ L2(a) < 224}.

Similarly, A1,A2 and A3 are defined as Ai = {(x ≫ (8 × i))|x ∈ A0} for i = 1, 2, 3,
respectively where ≫ denotes a rotational right shift.

The linear masks in Table 1 have the following properties:

– The linear mask of the best linear approximation is included in one of the Ai for i =
0, 1, 2, 3;

– If a ∈ A0, then ρ(a, a) is equal to ρ(a′, a′) where a′ = (a ≫ (8 × i)) for i = 1, 2, 3.

Hereafter, we focus on A0 for further analysis since A1,A2 and A3 are symmetric to A0.

set γ L2(γ) set γ L2(γ)

0x0011ffba 0x0084be2f 0xba0011ff 0x2f0084be

0x007905e1 0x005afbc6 0xe1007905 0xc6005afb

A0 0x00edca7c 0x0083ffaa A1 0x7c00edca 0xaa0083ff

0x007852b3 0x00582b15 0xb3007852 0x1500582b

0x00a1b433 0x00f1027a 0x3300a1b4 0x7a00f102

0x00fa7099 0x00d20b1d 0x9900fa70 0x1d00d20b

0xffba0011 0xbe2f0084 0x11ffba00 0x84be2f00

0x05e10079 0xfbc6005a 0x7905e100 0x5afbc600

A2 0xca7c00ed 0xffaa0083 A3 0xedca7c00 0x83ffaa00

0x52b30078 0x2b150058 0x7852b300 0x582b1500

0xb43300a1 0x027a00f1 0xa1b43300 0xf1027a00

0x709900fa 0x0b1d00d2 0xfa709900 0xd20b1d00

Table 1. The list of linear masks γ where ρ(γ, γ) = 2−9.19 (This table was taken from [7])
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3 Multidimensional Linear Attack

Multidimensional linear cryptanalysis is an extension of Matsui’s linear cryptanalysis [15] in
which multiple linear approximations are optimally exploited. The general framework of the
multidimensional linear cryptanalysis adapting Matsui’s algorithm 1 and 2 was presented
by Hermelin et al. in [8] and [9].

Let us consider an iterative block cipher which maps a plaintext P to a ciphertext C with a
secret key K. Suppose we choose a set of m linear independent approximations f0, · · · , fm−1

where each fi is represented by

Ui · P ⊕ Vi · C = Wi ·K, 0 ≤ i ≤ m− 1

where Ui, Vi and Wi denote the linear masks. The number of possible linear combinations
of f0, · · · , fm−1 is 2m− 1. The multidimensional linear attack allows us to use the capability
of 2m− 1 linear approximations by evaluating only m linearly independent approximations.
The f0, · · · , fm−1 are called base approximations and the correlations of linear combinations
of base approximations are denoted by c1, · · · , c2m−1.

Let G denote the m-bit vector as G = (g0, . . . , gm−1) ∈ F
m
2 where gi = Wi ·K. Then, for a

fixed G, the probability distribution pG of the m-dimensional linear approximation is built
as pG = (p0,G, . . . , p2m−1,G) where

pi,G = 2−m
2m−1∑

j=0

(−1)j·(i⊕G)cj (7)

with the assumption of c0 = 1. In [9], the log-likelihood ratio (LLR) statistic is used for the
optimal distinguisher between two probability distribution p and q as follows:

LLR(p, q) =

2m−1∑

i=0

qi log
pi
ui

=

2m−1∑

i=0

qi log pi +m. (8)

where u = (u0, . . . , u2m−1) is the uniform distribution. The capacity of the probability

distribution pG is defined as Cp = 2m
∑2m−1

i=0 (pi,G − 2−m)2. It is known that the Cp is
equal to the sum of the square of correlations of all 2m − 1 linear approximations [4].

Multidimensional Algorithm 1 (MA1) MA1 attack targets to recover the m parity bits
of the key by using the m-dimensional linear approximation. In the preprocessing phase, the
attacker constructs the probability distribution pG = (p0,G, . . . , p2m−1,G) for each possible
value of G by (7). Since there are 2m possible values for G, the attacker needs to store
the probability distribution table which has 2m × 2m entries. In the processing phase, the
attacker collects the sufficient number of plaintext-ciphertext pairs generated with the un-
known key K and computes the empirical probability distribution qK = (q0,K , . . . , q2m−1,K)
by measuring the frequency of the vectors (g0, . . . , gm−1) ∈ F

m
2 where gi = Ui · P ⊕ Vi · C.

Among the possible candidates of G, the correctly guessed candidate is likely to have the
maximum log-likelihood ratio to the uniform distribution. Hence, the attacker choose the G
such that maxG LLR(pG, qK) as the right key.

Multidimensional Algorithm 2 (MA2) MA2 can be seen as an extended Matsui’s al-
gorithm 2 which nests MA1; the attacker guesses the parts of the round keys in the first and
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last rounds, and proceeds the MA1 attack over the remaining rounds with them-dimensional
linear approximation. Suppose l is the length of the guessed key in the first and last
rounds. The attacker retrieves the empirical probability distribution qκ = (qκ,0, . . . , qκ,2m−1)
for each possible value of κ ∈ [0, 2l − 1]. Then, the attacker choose κ and G such that
maxκ maxG LLR(pG, qκ) as the right key values. Hence, the attacker can recover (l + m)
bits information of the secret key.

Reducing Time Complexity In [10], Hermelin et al. proposed an improved algorithm
(which is called the convolution method) which can reduce the time complexity of the attack
significantly. The details are as follows. According to the MA1, the LLR-statistic needs
to be computed for all possible values of G ∈ GF (2m) and each LLR-statistic needs 2m

operations. Hence, the MA1 attack requires around 2m · 2m on-line computation efforts,
which is the major bottleneck of the multidimensional linear attack method.

This complexity can be greatly reduced by using Fast Walsh Hadamard Transform [19].
Instead of using LLR-statistics, the statistical decision can be equivalently made by com-
puting

DG =
2m−1∑

i=0

(−1)i⊕Gĉi × ci (9)

where ĉ0, . . . , ˆc2m−1 are the empirically measured correlations of 2m−1 linear approximations
[10]. Hence, we do not need to store the 2m × 2m size of the probability distribution table;
we need to store c1, . . . , c2m−1, or more practically we need to store only the significant
correlations among 2m− 1 correlations. Then (9) can be efficiently computed by Fast Walsh
Hadamard Transform which requires m × 2m operations. The correct key is recovered by
choosing G such that DG is maximal. We note that DG is independent of G due to Equation
(8).

Let l be the length of the guessed key. Since the DG is computed for each key candidate, the
required computations are reduced to m · 2m · 2l. Let k be the total key length (for SMS4,
k = 128). In order to be faster than the key exhaustive search, MA1 and MA2 should satisfy
the following conditions:

Condition for MA1: m · 2m < 2k ⇐⇒ log2(m) +m < k

Condition for MA2: m · 2m · 2l < 2k ⇐⇒ log2(m) +m+ l < k

In Section 4.3, we apply MA2 attack to the 23-round version of SMS4 with the parameter
of m = 34 and l = 88.

4 Multidimensional Linear Attack on SMS4

4.1 Correlation of ρ(γ, γ)

Let us recall Section 2.2. Apart from the linear approximations listed in Table 1, we observe
that there are 52744 non-zero linear approximations in A0. The number of linear approxi-
mations from the strongest one is displayed in Table 2. Furthermore, we observe that all the
non-zero approximations can be generated by using 16 base approximations listed in Table
5 even though the number of ”active” bits in A0 is 24.

Let’s consider an 8-round linear characteristic which uses the linear approximation of (5).
According to Table 1, the strongest approximation of (5) holds with the correlation of
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(2−9.19)2 = 2−18.38. Hence, Matsui’s linear attack using a single linear approximation re-
quires around (2−18.38)−2 = 236.76 data complexity. On the contrary, the multidimensional
linear attack can take these 16 base approximations and use the capacity of those probability
distribution. Computation shows that the capacity is around 2−29.3.

Let Φ(x) =
∫ x

−∞
1√
2π

e−t2/2dt be the normal cumulative distribution function. In [8], the

data complexity for MA1 is calculated as

NMA1 =
(Φ−1(PS) + Φ−1(1− 2−a))2

Cp

where PS stands for a success probability, Cp means a capacity and a denotes the advantage
of the attack. We say that the attack has the advantage of a = (m− log2 d) if the right key
is ranked in the position of d from the top out of 2m key candidates [16]. Hence, the full
advantage (a = 16) can be achieved with the data complexity of around 234.4.

We verified our estimation by experiment. We applied the MA1 attack to 8 rounds of SMS4.
See Appendix A. Figure 2 shows that the experimental result is well matched with the
theoretical estimation.

|ρ(γ, γ)| Number of approx.

2−9.19 6
2−9.39 11
2−9.42 15
2−9.58 12
2−9.61 76
2−9.68 7
2−9.80 120
2−9.83 89
2−9.87 56

|ρ(α, γ)| Number of approx.

2−9.0 125
2−9.10 0
2−9.20 1200
2−9.30 0
2−9.40 6540
2−9.50 0
2−9.60 21376
2−9.70 1800
2−9.80 47088

Table 2. Evaluation of the number of linear approximations of the round function where γ ∈ A0

4.2 Correlation of ρ(α, γ)

Suppose γ ∈ A0 is one of the linear masks which are listed in Table 1. We observe that, for
0 ≤ α ≤ 224, the strongest value of ρ(α, γ) is 2−9.0 and #{α|ρ(α, γ) = 2−9.0} = 125. The
partial list on the number of linear approximations is displayed in the right side of Table 2.

4.3 MA2 Attack on 23-round SMS4

In this attack, we build a 20-round linear characteristic which starts from round 3 and ends
at round 22. Then, we apply MA2 attack for recovering 88 bits of round key (32 bits of RK0,
32 bits of RK1 and 24 bits of RK22) and 34 parity bits of round keys.

20-Round Linear Characteristic Let α, β, γ ∈ GF (232) be linear masks where α, β, γ ∈
Ai for i = 0, 1, 2, 3. First, we build two rounds characteristic using α, β and γ in round 3
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and 4 as follows:

α ·X2 ⊕ β · (X3 ⊕X4 ⊕X5 ⊕RK2) = α ·X6

γ ·X3 ⊕ α · (X4 ⊕X5 ⊕X6 ⊕RK3) = γ ·X7 (10)

Then, the correlation of (10) is ρ(β, α)ρ(α, γ). From round 8 to round 22, we use the 15-round
characteristic which is of the form (6).

γ ·X7 ⊕ γ ·X22 = γ · (RK7 ⊕RK8 ⊕RK12 ⊕RK13 ⊕RK17 ⊕RK18) (11)

Then, by combining (10) and (11), we get

α ·X2 ⊕ (β ⊕ γ) ·X3 ⊕ (α⊕ β) · (X4 ⊕X5)⊕ γ ·X22

= β · RK2 ⊕ α · RK3 ⊕ γ · (RK7 ⊕RK8 ⊕RK12 ⊕RK13 ⊕RK17 ⊕RK18) (12)

with the correlation of ρ(β, α)ρ(α, γ)ρ6(γ, γ). The left part of the characteristic (12) can be
expressed as

(α, β ⊕ γ, α⊕ β, α⊕ β) · P ⊕ (γ, 0, 0, 0) · C

where P = (X2, X3, X4, X5) and C = (X22, X23, X24, X25). Note that another linear charac-
teristic with an equivalent correlation can be built by moving the two rounds characteristic
(10) to the last two rounds. 20-round characteristics are further discussed in Appendix B.

Probability Distribution and Capacity Let γ ∈ A0. Since the most significant 8 bits
are zero and 0 ≤ L2(γ) < 224, it is sufficient to guess the lower 24 bits for RK22. We assume
that 0 ≤ α ≤ 224. Since 0 ≤ L2(α) < 232, it is needed that 0 ≤ β ≤ 232. Hence, the full
length of round key (32 bits) for RK0 and RK1 should be guessed. Therefore, the target
key length is 32 · 2 + 24 = 88 bits.

Let m be the number of base approximations over the 20-round characteristic (12). We
apply the convolution method [10] to build the probability distribution ofm approximations.
Suppose that δ is a threshold value which determines the number of linear approximations
being used for an attack. Let us defineM as

M = {(α, β) | (ρ(β, α)ρ(α, γ))2 > δ}.

Then, the capacity of the probability distribution is calculated as

Cp =
∑

γ∈A0

CM(γ) (13)

where
CM(γ) =

∑

(α,β)∈M
ρ2(β, α)ρ2(α, γ)ρ12(γ, γ). (14)

We denote M = |M|. The capacities of multiple approximations for several values of M
are evaluated in Table 3 when ρ(γ, γ) = 2−9.19 is used. Then, we need to determine the
minimum dimension m of base approximations which can span M linear approximations
whose capacity is sufficient for the attack. As described in Section 3, m should satisfy the
condition that log2(m) +m+ 88 < 128, that is, m ≤ 34.

We searched exhaustively the base approximations which yield the maximum capacity. We
could not finish searching for all combinations of the possible base approximations. So far,
we found that 34 base approximations could span an sufficient number of non-negligible
linear approximations. It would be an interesting research topic how to find the best base
approximations efficiently. We also note that the multiple linear approximations in A1, A2

and A3 can be also used for the attack since they are symmetrical to A0.
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δ M Cp

2−36.0 125 = 27.0 2−135.6

2−36.4 2075 = 211.0 2−131.9

2−36.8 14615 = 213.8 2−129.5

2−37.2 62476 = 215.9 2−127.7

2−37.6 211462 = 217.7 2−126.2

2−38.0 1696134 = 220.7 2−123.0

2−38.4 4249383 = 222.0 2−122.0

2−38.8 10655129 = 223.4 2−121.3

2−39.2 31530029 = 224.7 2−119.7

2−39.6 75192630 = 226.2 2−119.0

Table 3. Evaluation of the number of linear approximations and capacity when ρ(γ, γ) = 2−9.19

Attack Algorithm Let NMA2 denote the data complexity required for the MA2 attack.
Under the Matsui’s algorithm 2 attack scenario, we perform the 2-round encryption and
1-round decryption on each plaintext-ciphertext pair per each guessed key, which requires
O(NMA2 · 2

l) time complexity for a naive implementation. Since this step includes many
repeated computations, we can reduce the time complexity by dividing this step into two sub
steps: first, we store the relevant parts of the plaintext-ciphertext pairs in the memory, and
later we calculate the desired correlations from the stored values by Fast Fourier Transform.
This technique was presented by Collard et al. in [3] and applied to 22-round version of
SMS4 by Etrog et al. in [7].

Let us denote T0 = X1 ⊕ X2 ⊕ X3, T1 = X0 ⊕ X2 ⊕ X3 T2 = X23 ⊕ X24 ⊕ X25. By the
definition of the round function, we can write

X0 ⊕ F (T0 ⊕RK0) = X4,

X1 ⊕ F (T1 ⊕ F (T0 ⊕RK0)⊕RK1) = X5 and

X26 ⊕ F (T2 ⊕RK22) = X22.

Then, the left side of (12) is transformed into

α ·X2 ⊕ (β ⊕ γ) ·X3 ⊕ (α⊕ β) · (X0 ⊕X1)⊕ γ ·X26

γ · F (T2 ⊕RK22)⊕ (α⊕ β) · (F (T0 ⊕RK0)⊕ F (T1 ⊕ F (T0 ⊕RK0)⊕ RK1))

where (α, β) ∈M.

In the preprocessing phase, MA2 attack proceeds the following steps:

1. Choose m base approximations f1, , fm and index their 2m linear combinations a1f1 ⊕
· · · ⊕ amfm using m-bit integers (a1, . . . , am). From them, choose a subset I of size M
consisting of indices of those linear approximations that have significant correlations.

2. Calculate the correlation of linear approximations by using the linear correlation table
of the S-box and store ci, i ∈ I.

In the Online phase, we proceed along the following

1. Prepare M × 296 counters w[i][0], . . . , w[i][296 − 1] where i ∈ I. Initialize all counters to
zeros.

2. Collect the NMA2 plaintext-ciphertext pairs of 23-round SMS4.
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3. Let x ∈ F2 be defined as

x = α ·X2 ⊕ (β ⊕ γ) ·X3 ⊕ (α⊕ β) · (X0 ⊕X1)⊕ γ ·X26.

Compute x for all plaintext-ciphertext pairs and all linear approximations. If x = 0,
increment the counter w[i][t] where t = (T0||T1||T2) ∈ F

96
2 and i ∈ I.

4. Let us denote k = RK0||RK1||RK22 ∈ F
l
2. We define σt,k as

σ(t, k) = γ · F (T2 ⊕RK22)⊕ (α ⊕ β) · (F (T0 ⊕RK0)⊕ F (T1 ⊕ F (T0 ⊕RK0)⊕RK1)) .

For a fixed k, compute the empirical correlations ĉ0,k, . . . , ĉM−1,k by the Fast Fourier
Transform as

ĉi,k =
1

NMA2

296−1∑

t=0

(−1)σ(t,k)w[i][t], i ∈ I.

5. For all possible values of G, compute Dk,G such that

Dk,G =
∑

i∈I

(−1)i⊕G ĉi,k × ci

where ĉI,k = ci = 0, for i /∈ I.
6. Choose k and G such that maxk maxG Dk,G is achieved. Then G determines m bits of

information of the right hand side of (12) where (α, β, γ) are the mask values for the
base approximations f1, . . . , fm.

Complexity Let a be the advantage of the attack. According to [8], the data complexity
required for MA2 attack is

NMA2 =
(Φ−1(PS) + Φ−1(1 − 2−m−a))2

Cp
≈

(l +m)

Cp
(15)

where PS is a success probability and Φ is the cumulative distribution function. We chose
m = 34 andM = 224.7. Then, the capacity of the 20-round characteristic (12) is Cp = 2−119.7

and the data complexity required for the full advantage (a = 88) of the attack is around
NMA2 = (88 + 34)/2−119.7 = 2126.6 with Ps = 0.95.

The computational efforts is estimated as follows. In the Step 3, we need evaluate M linear
approximations. This step can be done efficiently by evaluating the base approximations at
first and combing them later, which requires around NMA2 · m computations. The Step 4
can be done by Fast Fourier Transform which requires around 3 · 96 · 296 ·M . The Step 5 is
performed for each key by Fast Walsh Transform, which requires around 34·234 ·288 = 2127.0.
In total, the work efforts for Step 3 - 5 can be estimated as (2126.6 · 34 + 3 · 96 · 296 · 224.7 +
2126.4)/23 ≈ 2127.4 23-round encryptions. The memory requirement isM ·296+3·296 ≈ 2120.7.
The remaining key bits (128− 88) can be recovered by exhaustive search.

We summarize our new attacks and selected previously published attacks against the reduced-
round version of SMS4 in Table 4.

5 Conclusion

In this paper, we showed how the multidimensional linear cryptanalysis could improve the
previous linear attack on the reduced version of SMS4. We adapted a recently developed
multidimensional attack technique using Fast Walsh Transform for the linear attack on
the reduced version of SMS4. We showed that the work efforts for computing the statistic
distinguisher could be reduced. We should note that there is still a room for improving the
performance of the attack. We leave this issue for future research.
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round data time memory method

22 2118.4 2117 2112 Linear [7]
22 2117 2112.3 2110 Differential [21]
23 2126.6 2127.4 2120.7 MultiDim. Linear (this paper)

Table 4. Comparison of data and time complexity of the attacks against reduced-round SMS4
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A MA1 Attack against 8-round SMS4

In this section, we demonstrate how the multidimensional linear attack can improve Matsui’s
linear attack using a single linear approximation. Due to the restriction of computational
resource, we target to recover 16 parity bits of round keys by applying the MA1 attack against
an 8-round version of SMS4. In [7], it is reported that the best 8-round linear characteristic
(5) holds with the correlation of 2−18.4. Hence, Matsui’s Algorithm 1 attack using this single
approximation requires around 236.8 data complexity.

Let us assume that B = {a|ρ(a, a) 6= 0}. We found that there exist many linear approxima-
tions which have non-negligible correlation in the set B. If we take sixteen base approxima-
tions, we can use 52744 non-zero linear approximations. By computer simulation, we found
that the capacity grew up to 2−29.3.

We performed the Algorithm 1 attack and compared the result with the theoretical estima-
tion in Figure 2. The experiment was repeated 30 times with randomly chosen keys and the
average of the advantage was computed. The solid line indicates the empirical result and the
dot line indicates the theoretical estimation. The graphs show that our estimation is well
matched with the real attack.

B Other 20-round linear chracteristics

Other 20-Round Linear Characteristic We can build other forms of 20-round linear
characteristics which have equivalent correlations with (12). First, we derive a single linear
characteristic for round 3 by using α and γ as follows:

γ ·X2 ⊕ α · (X3 ⊕X4 ⊕X5 ⊕RK2) = γ ·X6 (16)
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Fig. 2. Comparison of empirical results and theoretical estimation on the linear attack of 8-round
SMS4

index mask ρ(γ, γ)

1 0x0011ffba 2−9.2

2 0x007905e1 2−9.2

3 0x00edca7c 2−9.2

4 0x007852b3 2−9.2

5 0x00a1b433 2−9.2

6 0x00fa7099 2−9.2

7 0x001390df 2−9.4

8 0x001ddeab 2−9.4

9 0x00309757 2−9.4

10 0x003461b1 2−9.4

11 0x0038a545 2−9.4

12 0x003faa55 2−9.4

13 0x0041b3b7 2−9.4

14 0x004da296 2−9.4

15 0x0062a12a 2−9.4

16 0x007019d8 2−9.4

Table 5. Linear masks of the base approximation for 8-round characteristic
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with the correlation of ρ(α, γ). Next, we reuse the 18-round characteristic of (6) from round
7 to round 21. Then, we get

γ ·X6 ⊕ γ ·X21 = γ · (RK6 ⊕RK7 ⊕RK11 ⊕RK12 ⊕RK16 ⊕RK17) (17)

with the correlation of ρ6(γ, γ). Finally, we derive a single round linear characteristic using
γ and β for round 22 as follows:

γ ·X21 ⊕ β · (X22 ⊕X23 ⊕X24 ⊕RK21) = γ ·X25 (18)

holding with the correlation of ρ(β, γ).

In result, the combination of (16), (17) and (18) gives us the following 20-round linear
characteristic:

γ ·X2 ⊕ α · (X3 ⊕X4 ⊕X5)⊕ β · (X22 ⊕X23 ⊕X24)⊕ γ ·X25

= α ·RK2 ⊕ γ · (RK6 ⊕RK7 ⊕RK11 ⊕RK12 ⊕RK16 ⊕RK17))⊕ β ·RK21 (19)

and the correlation of (19) is ρ(α, γ)ρ6(γ, γ)ρ(β, γ).

Apart from (19) and (12), another form of 20-round characteristic can be built as follows.
First, we use a single characteristic (16) in the round 3.

γ ·X2 ⊕ α · (X3 ⊕X4 ⊕X5 ⊕RK2) = γ ·X6

Second, instead of using (17), we derive

γ ·X5 ⊕ γ · (X6 ⊕X7 ⊕X8 ⊕RK5) = γ ·X9

γ ·X7 ⊕ γ · (X8 ⊕X9 ⊕X10 ⊕ RK7) = γ ·X11

γ ·X10 ⊕ γ · (X11 ⊕X12 ⊕X13 ⊕RK10) = γ ·X14

γ ·X12 ⊕ γ · (X13 ⊕X14 ⊕X15 ⊕RK12) = γ ·X16

γ ·X15 ⊕ γ · (X16 ⊕X17 ⊕X18 ⊕RK15) = γ ·X19

γ ·X17 ⊕ γ · (X18 ⊕X19 ⊕X20 ⊕RK17) = γ ·X21

γ ·X20 ⊕ γ · (X21 ⊕X22 ⊕X23 ⊕RK20) = γ ·X24

Then, by combining them, we get

γ ·X2 ⊕ α · (X3 ⊕X4)⊕ (α⊕ γ) ·X5 ⊕ γ · (X22 ⊕X23 ⊕X24) =

α ·RK2 ⊕ γ · (RK5 ⊕RK7 ⊕RK10 ⊕RK12 ⊕RK15 ⊕RK17 ⊕RK20)

with the correlation of ρ(α, γ)ρ7(γ, γ).


